Add like
Add dislike
Add to saved papers

Underdetermined Blind Source Separation of Synchronous Orthogonal Frequency Hopping Signals Based on Single Source Points Detection.

Sensors 2017 September 12
This paper considers the complex-valued mixing matrix estimation and direction-of-arrival (DOA) estimation of synchronous orthogonal frequency hopping (FH) signals in the underdetermined blind source separation (UBSS). A novel mixing matrix estimation algorithm is proposed by detecting single source points (SSPs) where only one source contributes its power. Firstly, the proposed algorithm distinguishes the SSPs by the comparison of the normalized coefficients of time frequency (TF) points, which is more effective than existing detection algorithms. Then, mixing matrix of FH signals can be estimated by the hierarchical clustering method. To sort synchronous orthogonal FH signals, a modified subspace projection method is presented to obtain the DOAs of FH. One superiority of this paper is that the estimation accuracy of the mixing matrix can be significantly improved by the proposed SSPs detection criteria. Another superiority of this paper is that synchronous orthogonal FH signals can be sorted in underdetermined condition. The experimental results demonstrate the efficiency of the two proposed algorithms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app