Add like
Add dislike
Add to saved papers

Hodgkin-Huxley model based on ionic transport in axoplasmic fluid.

Hodgkin-Huxley model has been reframed to incorporate the physical parameters of fluid inside the axon. The reframed model comprises of set of partial differential equations containing the physical parameters: density, mass fraction of sodium, potassium and chlorine ions, longitudinal diffusivity of ions and rate of additions of ions along with the temperature. Obtained conduction velocity of 19.5m/sec at a temperature of 18.5 degree celcius and conduction velocity dependency on temperature within the range 5 to 25 degree celcius are two important results that strongly validate the proposed model. The behavior of all the physical parameters has been characterized with respect to the action potential. Action potential conduction velocity along with axoplasmic fluid viscosity has been characterized with respect to different temperatures. Longitudinal diffusivity of ions is also quantified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app