Add like
Add dislike
Add to saved papers

Response of Human Fetal Liver Progenitor Cell Types to Temperature and pH Stresses In Vitro.

Prolonged physiological stresses, including abnormal pH and temperature, are deleterious. However, human hepatic progenitors have been shown to be quite tolerant of temporary temperature stress such as in cold ischemia. We aimed at identifying how various stresses affect liver progenitors, and at determining whether distinct effects exist on different progenitor cells of the human liver. Total fetal liver cells were exposed to low (25°C), normal (37°C), or high (40°C) temperatures, or low (6.76), normal (7.35), or high (7.88) pH in vitro. Culture at 25°C increased cell numbers and percentages of proliferation marker Ki67+ total cells. In total cell cultures, percentages of CD326+ hepatic progenitors co-expressing DLK1 (delta-like 1 homolog), SSEA4, or CD90 increased, as well as proliferation of SSEA4+ and CD235a+ progenitors. Analyses of presorted hepatic progenitors revealed that culture at 25°C increased cell numbers of CD326+ hepatic stem/progenitor cells but not DLK+ hepatoblasts. The expression of several mesenchymal genes was reduced, and distinct hepatic stem/progenitor cell colonies emerged. At 40°C, numbers of adherent hepatic cells decreased but those of hematopoietic nonadherent cells increased. High pH did not cause major effects. Acidic pH resulted in decreased total cell numbers and affected hematopoietic cells. Percentages of DLK1+ hepatoblasts were increased, but those of hematopoietic mature CD45+ cells were decreased. In particular, proliferation of adherent hepatic CD326+ , SSEA4+ progenitors, and hematopoietic CD45+ cells and CD235a+ erythroblasts was reduced. Conclusively, our data indicate that low-temperature stress stimulates hepatic progenitor and erythroblast proliferation, whereas acidic pH promotes hepatic maturation and reduces hematopoietic cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app