Add like
Add dislike
Add to saved papers

Synthesis of AgWCN x Nanocomposites for the One-Step Conversion of Cyclohexene to Adipic Acid and Its Mechanistic Studies.

A novel catalyst composed of silver nanoparticles grafted on WCNx has been prepared by using a facile pH-adjusted method. The material reported in this study presents a non-mineral acid route for the synthesis of the industrially significant monomer adipic acid through the selective oxidation of cyclohexene. Ag has been stabilized in the hydrophobic matrix during the formation of the mesoporous silica material by using aniline as stabilizing agent. A cyclohexene conversion of 92.2 % with 96.2 % selectivity for adipic acid was observed with the AgWCNx -2 catalyst, therefore, the AgWCNx catalyst was found to be efficient for the direct conversion to adipic acid with respect to their monometallic counterparts. The energy profile diagrams for each reaction path by using the AgWCNx catalyst were studied along with their monometallic counterparts by using the Gaussian 09 package. The reported material can avoid the use of harmful phase-transfer catalysts (PTC) and/or chlorinated additives, which are two among other benefits of the reported work.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app