Add like
Add dislike
Add to saved papers

Protein Catenation Enhances Both the Stability and Activity of Folded Structural Domains.

Angewandte Chemie 2017 September 11
Catenanes are intriguing molecular architectures with unique properties. Herein, we report the cellular synthesis of protein catenanes containing folded structural domains, aided by synergy between p53 dimerization and SpyTag/SpyCatcher chemistry. Concatenation of green fluorescent protein (GFP) was shown to increase chemical stability without disrupting the fluorescence properties, and concatenated dihydrofolate reductase (DHFR) exhibited a melting temperature around 4 °C higher and catalytic activity around 27 % higher than the wild-type DHFR and the cyclic/linear controls. Catenation also confers considerable proteolytic resistance on DHFR. The results suggest that catenation could enhance both the stability and activity of folded proteins, thus making topology engineering an attractive approach for tailoring protein properties without varying their native sequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app