Add like
Add dislike
Add to saved papers

Treg/Th17 cell balance and phytohaemagglutinin activation of T lymphocytes in peripheral blood of systemic sclerosis patients.

AIM: To investigate T-cell activation, the percentage of peripheral T regulatory cells (Tregs), Th17 cells and the circulating cytokine profile in systemic sclerosis (SSc).

METHODS: We enrolled a total of 24 SSc patients and 16 healthy controls in the study and divided the patients as having diffuse cutaneous SSc (dcSSc, n = 13) or limited cutaneous SSc (lcSSc, n = 11). We performed a further subdivision of the patients regarding the stage of the disease - early, intermediate or late. Peripheral venous blood samples were collected from all subjects. We performed flow cytometric analysis of the activation capacity of T-lymphocytes upon stimulation with PHA-M and of the percentage of peripheral Tregs and Th17 cells in both patients and healthy controls. We used ELISA to quantitate serum levels of human interleukin (IL)-6, IL-10, tissue growth factor-β1 (TGF-β1), and IL-17A.

RESULTS: We identified a decreased percentage of CD3+CD69+ cells in PHA-stimulated samples from SSc patients in comparison with healthy controls (13.35% ± 2.90% vs 37.03% ± 2.33%, P < 0.001). However, we did not establish a correlation between the down-regulated CD3+CD69+ cells and the clinical subset, nor regarding the stage of the disease. The activated CD4+CD25+ peripheral lymphocytes were represented in decreased percentage in patients when compared to controls (6.30% ± 0.68% vs 9.36% ± 1.08%, P = 0.016). Regarding the forms of the disease, dcSSc patients demonstrated lower frequency of CD4+CD25+ T cells against healthy subjects (5.95% ± 0.89% vs 9.36% ± 1.08%, P = 0.025). With regard to Th17 cells, our patients demonstrated increased percentage in comparison with controls (18.13% ± 1.55% vs 13.73% ± 1.21%, P = 0.031). We detected up-regulated Th17 cells within the lcSSc subset against controls (20.46% ± 2.41% vs 13.73% ± 1.21%, P = 0.025), nevertheless no difference was found between dcSSc and lcSSc patients. Flow cytometric analysis revealed an increased percentage of CD4+CD25-Foxp3+ in dcSSc patients compared to controls (10.94% ± 1.65% vs 6.88% ± 0.91, P = 0.032). Regarding the peripheral cytokine profile, we detected raised levels of IL-6 [2.10 (1.05-4.60) pg/mL vs 0.00 pg/mL, P < 0.001], TGF-β1 (19.94 ± 3.35 ng/mL vs 10.03 ± 2.25 ng/mL, P = 0.02), IL-10 (2.83 ± 0.44 pg/mL vs 0.68 ± 0.51 pg/mL, P = 0.008), and IL-17A [6.30 (2.50-15.60) pg/mL vs 0 (0.00-0.05) pg/mL, P < 0.001] in patients when compared to healthy controls. Furthermore, we found increased circulating IL-10, TGF-β, IL-6 and IL-17A in the lcSSc subset vs control subjects, as it follows: IL-10 (3.32 ± 0.59 pg/mL vs 0.68 ± 0.51 pg/mL, P = 0.003), TGF-β1 (22.82 ± 4.99 ng/mL vs 10.03 ± 2.25 ng/mL, P = 0.031), IL-6 [2.08 (1.51-4.69) pg/mL vs 0.00 pg/mL, P < 0.001], and IL-17A [14.50 (8.55-41.65) pg/mL vs 0.00 (0.00-0.05) pg/mL, P < 0.001]. Furthermore, circulating IL-17A was higher in lcSSc as opposed to dcSSc subset (31.99 ± 13.29 pg/mL vs 7.14 ± 3.01 pg/mL, P = 0.008). Within the dcSSc subset, raised levels of IL-17A and IL-6 were detected vs healthy controls: IL-17A [2.60 (0.45-9.80) pg/mL vs 0.00 (0.00-0.05) pg/mL, P < 0.001], IL-6 [2.80 (1.03-7.23) pg/mL vs 0.00 pg/mL, P < 0.001]. Regarding the stages of the disease, TGF-β1 serum levels were increased in early stage against late stage, independently from the SSc phenotype (30.03 ± 4.59 ng/mL vs 13.08 ± 4.50 ng/mL, P = 0.017).

CONCLUSION: It is likely that the altered percentage of Th17 and CD4+CD25-FoxP3+ cells along with the peripheral cytokine profile in patients with SSc may play a key role in the pathogenesis of the disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app