Add like
Add dislike
Add to saved papers

Activated brain-derived neurotrophic factor/TrkB signaling in rat dorsal and ventral hippocampi following 10-day electroconvulsive seizure treatment.

Neuroscience Letters 2017 November 2
Electroconvulsive therapy (ECT) is still the most effective strategy to treat severe and drug-resistant depressive disorders. Electroconvulsive seizure (ECS), which induces neuroplastic structural alterations and resilient behavioral changes in experimental animals, is the model of the ECT for human depression. ECT is typically administered three times per week for up to 4 weeks, while ECS treatments are administered daily for 10days. The increased expression of hippocampal brain-derived neurotrophic factor (BDNF) induced by antidepressive ECS treatment in experimental animals has been well documented. BDNF executes various neuroplastic functions by phosphorylating its high-affinity receptor, full-length TrkB, which has an intrinsic tyrosine kinase domain. However, the exact activation of BDNF/TrkB signaling following multiple ECS treatments has not been well elucidated. In epileptogenesis, conflicting effects of BDNF have been reported; while acute BDNF administration enhanced neuronal hyperexcitability and induced epileptiform activities, continuous BDNF infusion inhibited epileptogenesis. These conflicting results have been attributed to agonist-induced adaptive response of expressional down-regulation of the BDNF receptor. In the present study, using western blotting, we demonstrated increased phosphorylation as well as decreased expression of the full-length TrkB receptor (145kD) in both dorsal and ventral hippocampal regions of rats after a 10-day ECS treatment. The expression of mature BDNF (14kD) was up-regulated while that of proBDNF (32kD) remained unaltered in both hippocampal regions after the ECS treatment. Our results indicate that the hippocampal BDNF/TrkB signaling pathway is activated by multiple ECS treatments despite the ligand-induced down-regulation of the full-length TrkB receptor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app