Add like
Add dislike
Add to saved papers

Transcriptional interaction between cFOS and the homeodomain-binding transcription factor VAX1 on the GnRH promoter controls Gnrh1 expression levels in a GnRH neuron maturation specific manner.

Gonadotropin-releasing hormone (GnRH) is required for pubertal onset and reproduction, thus the control of GnRH transcription is tightly regulated during development and adulthood. GnRH neuron development depends on transcription factors of the homeodomain family. For example, Ventral anterior homeobox 1 (Vax1) is necessary to maintain GnRH expression after embryonic day 13 in the mouse. To further our understanding of the mechanisms by which VAX1 regulates GnRH gene expression, we asked whether VAX1 interacts with other transcription factors to modify GnRH expression levels. Using the GnRH cell lines, GN11 and GT1-7, we found that activation of PKC enhances expression of the immediate early gene cFos in both GN11, and GT1-7, and represses expression of Vax1 in GT1-7. Further, VAX1 interacts with cFOS while bound to the GnRH promoter. In immature GN11 cells, VAX1 and cFOS enhance GnRH expression, whereas VAX1 and cFOS have a repressive role in the mature GT1-7 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app