Add like
Add dislike
Add to saved papers

Ezrin regulates skin fibroblast size/mechanical properties and YAP-dependent proliferation.

Ezrin acts as a dynamic linkage between plasma membrane and cytoskeleton, and thus involved in many fundamental cellular functions. Yet, its potential role in human skin is virtually unknown. Here we investigate the role of Ezrin in primary skin fibroblasts, the major cells responsible extracellular matrix (ECM) production. We report that Ezrin play an important role in the maintenance of skin fibroblast size/mechanical properties and proliferation. siRNA-mediated Ezrin knockdown decreased fibroblast size and mechanical properties, and thus impaired the nuclear translocation of YAP, a protein commonly response to cell size and mechanical force. Functionally, depletion of Ezrin significantly inhibited YAP target gene expression and fibroblast proliferation. Conversely, restoration of YAP nuclear translocation by overexpression of constitutively active YAP reversed YAP target genes expression and rescued proliferation in Ezrin knockdown cells. These data reveal a novel role for Ezrin in maintenance of fibroblast size/mechanical force and regulating YAP-mediated proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app