Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of frequency on crack growth in articular cartilage.

Cracks can occur in the articular cartilage surface due to the mechanical loading of the synovial joint, trauma or wear and tear. However, the propagation of such cracks under different frequencies of loading is unknown. The objective of this study was to determine the effect of frequency of loading on the growth of a pre-existing crack in cartilage specimens subjected to cyclic tensile strain. A 2.26mm crack was introduced into cartilage specimens and crack growth was achieved by applying a sinusoidally varying tensile strain at frequencies of 1, 10 and 100Hz (i.e. corresponding to normal, above normal and up to rapid heel-strike rise times, respectively). These frequencies were applied with a strain of between 10-20% and the crack length was measured at 0, 20, 50, 100, 500, 1000, 5000 and 10,000 cycles of strain. Crack growth increased with increasing number of cycles. The maximum crack growth was 0.6 ± 0.3 (mean ± standard deviation), 0.8 ± 0.2 and 1.1 ± 0.4mm at frequencies of 1, 10 and 100Hz, respectively following 10,000 cycles. Mean crack growth were 0.3 ± 0.2 and 0.4 ± 0.2 at frequencies of 1 and 10Hz, respectively. However, this value increased up to 0.6 ± 0.4mm at a frequency of 100Hz. This study demonstrates that crack growth was greater at higher frequencies. The findings of this study may have implications in the early onset of osteoarthritis. This is because rapid heel-strike rise times have been implicated in the early onset of osteoarthritis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app