Add like
Add dislike
Add to saved papers

Glyoxal-induced modification enhances stability of hemoglobin and lowers iron-mediated oxidation reactions of the heme protein: An in vitro study.

Glyoxal, a reactive α-oxoaldehyde, increases in diabetic condition. It reacts with different proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. Considering the significance of AGE-mediated protein modification by glyoxal, here we have investigated the in vitro effect of the reactive α-oxoaldehyde (10, 20μM) on the heme protein hemoglobin (HbA0 ) (100μM) after incubation for one week at 25°C. In comparison with HbA0 , glyoxal-treated HbA0 exhibited decreased absorbance around 280nm, reduced intrinsic fluorescence and lower surface hydrophobicity. Glyoxal treatment was found to increase the stability of HbA0 without significant perturbation of the secondary structure of the heme protein. In addition, H2 O2 -mediated iron release and subsequent iron-mediated oxidative (Fenton) reactions were found to be lower in presence of glyoxal-treated HbA0 compared to HbA0 . Mass spectrometric studies revealed modification of arginine residues of HbA0 (Arg-31α, Arg-40β) to hydroimidazolone adducts. AGE-induced modifications thus appear to be associated with the observed changes of the heme protein. Considering the increased level of glyoxal in diabetes mellitus as well as its high reactivity, glyoxal-derived AGE adducts might thus be associated with modifications of the protein including physiological significance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app