Add like
Add dislike
Add to saved papers

Previously undescribed fridooleanenes and oxygenated labdanes from the brown seaweed Sargassum wightii and their protein tyrosine phosphatase-1B inhibitory activity.

Phytochemistry 2017 December
Previously undescribed fridooleanene triterpenoids 2α-hydroxy-(28,29)-frido-olean-12(13), 21(22)-dien-20-propyl-21-hex-4'(Z)-enoate, 2α-hydroxy-(28,29)-frido-olean-12(13), 21(22)-dien-20-prop-2(E)-en-21-butanoate and oxygenated labdane diterpenoids 2α-hydroxy-8(17), (12E), 14-labdatriene, 3β, 6β, 13α-tri hydroxy 8(17), 12E, 14-labdatriene were purified from the ethyl acetate-methanol and dichloromethane fractions of the air-dried thalli of Sargassum wightii (Sargassaceae), a brown seaweed collected from the Gulf-of-Mannar of Penninsular India. Inhibitory potential of Δ12 oleanenes towards protein tyrosine phosphatase-1B, the critical regulator of insulin-receptor activity were found to be significantly greater (IC50 0.1 × 10-2 and 0.09 × 10-2  mg/mL, respectively) than the standard sodium metavanadate (IC50 0.31 × 10-2  mg/mL). Fridooleanene triterpenoids displayed greater antioxidant activities (IC50DPPH 0.16-0.18 mg/mL) than the commercially available antioxidants, butylated hydroxytoluene and α-tocopherol (IC50DPPH 0.25 and 0.63 mg/mL, respectively). In general, the oxygenated labdane diterpenoids displayed significantly lesser antioxidant and tyrosine phosphatase-1B inhibitory properties than those exhibited by the fridooleanenes. Bioactivities of the titled compounds were primarily determined by the electronic and lipophilic parameters and not by the steric descriptors. Molecular docking simulations and kinetic studies were employed to describe the tyrosine phosphatase-1B inhibitory mechanism. The previously undescribed fridooleanene triterpenoids might be used as potential anti-hyperglycaemic pharmacophore leads to reduce the risk of elevated postprandial glucose levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app