Add like
Add dislike
Add to saved papers

Unidirectional growth of heavy meromyosin clusters along actin filaments revealed by real-time fluorescence microscopy.

Cytoskeleton 2017 December
Heavy meromyosin (HMM) forms clusters along actin filaments under low ATP concentrations. Here, we observed the growth of HMM clusters under low concentrations of ATP in real time using fluorescence microscopy. When actin filaments were loosely immobilized on positively charged lipid bilayers, clusters of HMM-GFP were readily formed. Time-lapse observation revealed that the clusters grew unidirectionally. When we used a mixture of actin filaments and copolymers of actin and acto-S1dC, a chimeric protein of actin and the myosin motor domain, HMM-GFP preferentially formed clusters along the copolymers. We thus suggest that binding of myosin motors carrying ADP and Pi induces unidirectional conformational changes in actin filaments and allosterically recruits more myosin binding. In contrast, when actin filaments and copolymers were anchored to glass substrate via stable biotin-avidin linkage, higher concentrations of HMM-GFP were required to form clusters than on the lipid bilayer. Moreover, actin filaments and copolymers were not discriminated regarding preferential cluster formation. This is presumably because the myosin-induced cooperative conformational changes in actin filaments involve changes in the helical twist. Consistent with this, cofilin clusters, which supertwist the helix, were readily formed along loosely immobilized actin filaments, but not along those anchored via biotin-avidin linkage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app