Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Analysis of earthworm sublethal toxic responses to atrazine exposure using 1 H nuclear magnetic resonance (NMR)-based metabolomics.

Atrazine toxicity to earthworms is still not fully understood, particularly at sublethal concentrations. Because of the ubiquity of atrazine in the environment, it is imperative to understand the impacts of atrazine presence to soil-dwelling organisms. To examine this in detail, we used 1 H nuclear magnetic resonance (NMR)-based metabolomics to elucidate earthworm (Eisenia fetida) responses after 48 h of atrazine exposure in contact tests. Earthworms were exposed to 4 sublethal concentrations of 362.4, 181.2, 90.6, and 45.3 ng/cm2 , which correspond to 1/8th, 1/16th, 1/32nd, and 1/64th of the median lethal concentration (LC50) values, respectively. After exposure, polar metabolites were isolated from earthworm tissues and analyzed using 1 H NMR spectroscopy. Sublethal atrazine exposure induced a nonmonotonic response with respect to exposure concentration and caused an overall suppression in earthworm metabolism. Maltose, fumarate, malate, threonine/lactate, adenosine-5'-triphosphate (ATP), betaine, scyllo-inositol, glutamate, arginine, and glutamine were the metabolites identified as most sensitive to atrazine exposure. These observed fluctuations in the metabolic profile suggest that atrazine reduced ATP synthesis and negatively impacted the health of earthworms after acute sublethal exposure. Our study also demonstrates the utility of NMR-based metabolomics for the basic assessment of sublethal toxicity, which can then be used for more targeted approaches with other molecular techniques. Environ Toxicol Chem 2018;37:473-480. © 2017 SETAC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app