Add like
Add dislike
Add to saved papers

Imaging cardiac innervation in amyloidosis.

Cardiac amyloidosis is a form of restrictive cardiomyopathy resulting in heart failure and potential risk on arrhythmia, due to amyloid infiltration of the nerve conduction system and the myocardial tissue. The prognosis in this progressive disease is poor, probably due the development of cardiac arrhythmias. Early detection of cardiac sympathetic innervation disturbances has become of major clinical interest, because its occurrence and severity limits the choice of treatment. The use of iodine-123 labelled metaiodobenzylguanidine ([I-123]MIBG), a chemical modified analogue of norepinephrine, is well established in patients with heart failure and plays an important role in evaluation of sympathetic innervation in cardiac amyloidosis. [I-123]MIBG is stored in vesicles in the sympathetic nerve terminals and is not catabolized like norepinephrine. Decreased heart-to-mediastinum ratios on late planar images and increased wash-out rates indicate cardiac sympathetic denervation and are associated with poor prognosis. Single photon emission computed tomography provides additional information and has advantages for evaluating abnormalities in regional distribution in the myocardium. [I-123]MIBG is mainly useful in patients with hereditary and wild-type ATTR cardiac amyloidosis, not in AA and AL amyloidosis. The potential role of positron emission tomography for cardiac sympathetic innervation in amyloidosis has not yet been identified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app