Add like
Add dislike
Add to saved papers

Widening the spectrum of deletions and molecular mechanisms underlying alpha-thalassemia.

Annals of Hematology 2017 November
Inherited deletions of α-globin genes and/or their upstream regulatory elements (MCSs) give rise to α-thalassemia, an autosomal recessive microcytic hypochromic anemia. In this study, multiplex ligation-dependent probe amplification performed with commercial and synthetic engineered probes, Gap-PCR, and DNA sequencing were used to characterize lesions in the sub-telomeric region of the short arm of chromosome 16, possibly explaining the α-thalassemia/HbH disease phenotype in ten patients. We have found six different deletions, in heterozygosity, ranging from approximately 3.3 to 323 kb, two of them not previously described. The deletions fall into two categories: one includes deletions which totally remove the α-globin gene cluster, whereas the other includes deletions removing only the distal regulatory elements and keeping the α-globin genes structurally intact. An indel was observed in one patient involving the loss of the MCS-R2 and the insertion of 39 bp originated from a complex rearrangement spanning the deletion breakpoints. Finally, in another case, no α-globin gene cluster deletion was found and the patient revealed to be a very unusual case of acquired α-thalassemia-myelodysplastic syndrome. This study further illustrates the diversity of genomic lesions and underlying molecular mechanisms leading to α-thalassemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app