Add like
Add dislike
Add to saved papers

Biomechanical properties and cellular biocompatibility of 3D printed tracheal graft.

The goals of our study were to evaluate the biomechanical properties and cellular biocompatibility of 3D printed tracheal graft fabricated by polycaprolactone (PCL). Compared with native tracheal patch, there was a significant increase in maximum stress and elastic modulus for 3DP tracheal graft (p < 0.05). BMSCs were co-cultured under four different conditions to investigate cytotoxicity of the graft: (1) co-cultured with normal culture medium, as blank control; (2) co-cultured with perfluoropropylene, as negative control; (3) co-cultured with 3DP tracheal graft; and (4) co-cultured with polyvinyl chloride, as positive control. Moreover, the results of SRB assay showed that compared with blank and negative control group, there was no significant difference in the cell proliferation of 3DP tracheal graft group for 21 days (p > 0.05). These results revealed that 3DP tracheal graft in our study has favorable cellular biocompatibility and biomechanical properties, and, therefore, will be a promising alternative for tissue-engineered trachea.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app