Add like
Add dislike
Add to saved papers

Identification of a Novel Salmonella Type III Effector by Quantitative Secretome Profiling.

Salmonella enterica serovar Typhimurium is arguably one of the most studied bacterial pathogens and successful infection requires the delivery of its virulence factors (effectors) directly into host cells via the type III secretion systems (T3SSs). Central to Salmonella pathogenesis, these effector proteins have been subjected to extensive studies over the years. Nevertheless, whether additional effectors exist remains unclear. Here we report the identification of a novel Salmonella T3SS effector STM1239 (which we renamed SopF) via quantitative secretome profiling. Immunoblotting and β-lactamase reporter assays confirmed the secretion and translocation of SopF in a T3SS-dependent manner. Moreover, ectopic expression of SopF caused significant toxicity in yeast cells. Importantly, genetic ablation of sopF led to Salmonella strains defective in intracellular replication within macrophages and the mutant were also markedly attenuated in a mouse model of infection. Our study underscores the use of quantitative secretome profiling in identifying novel virulence factors for bacterial pathogens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app