Add like
Add dislike
Add to saved papers

Bivalent mucosal peptide vaccines administered using the LCP carrier system stimulate protective immune responses against Streptococcus pyogenes infection.

Despite the broad knowledge about the pathogenicity of Streptococcus pyogenes there is still a controversy about the correlate of protection in GAS infections. We aimed in further improving the immune responses stimulated against GAS comparing different vaccine formulations including bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) and BPPCysMPEG, a derivative of the macrophage-activating lipopeptide (MALP-2), as adjuvants, respectively, to be administered with and without the universal T helper cell epitope P25 along with the optimized B cell epitope J14 of the M protein and B and T cell epitopes of SfbI. Lipopeptide based nano carrier systems (LCP) were used for efficient antigen delivery across the mucosal barrier. The stimulated immune responses were efficient in protecting mice against a respiratory challenge with a lethal dose of a heterologous S. pyogenes strain. Moreover, combination of the LCP based peptide vaccine with c-di-AMP allowed reduction of antigen dose at the same time maintaining vaccine efficacy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app