JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In vitro and in vivo exploration of palmitic acid from Synechococcus elongatus as an antibiofilm agent on the survival of Artemia franciscana against virulent vibrios.

Biofilm formation of Vibrio spp. has been demonstrated as a potentially important mechanism contributing antibiotic treatment failure in aquaculture. In the present study, the effect of palmitic acid (PA) identified from Synechococcus elongatus was assessed for the inhibition of quorum sensing (QS) regulated biofilm formation in aquatic bacterial pathogens. The biofilm inhibitory concentration (BIC) of PA against Vibrio spp. was found to be 100µgml-1 . In this concentration, PA exhibited a significant inhibition in biofilm biomass of Vibrio harveyi MTCC 3438, V. parahaemolyticus ATCC 17802, V. vulnificus MTCC 1145 and V. alginolyticus ATCC 17749 without hindering their planktonic growth. Also, PA displayed gradual decrease in bioluminescence production of V. harveyi. The results of extracellular polymeric substances quantification, microbial adhesion to hydrocarbons and Fourier transform infrared spectroscopic (FT-IR) analyses suggested that PA positively interferes with the initial adhesion stages of biofilm formation. In addition, confocal and scanning electron microscopic analysis substantiates the antibiofilm efficacy of the PA. The transcriptomic analysis revealed the down-regulation of QS mediated response regulator genes expression in V. harveyi. Concomitantly, PA reduced the intestinal colonization of vibrios in brine shrimp larvae and thereby attenuates the biofilm assemblage and its associated virulence. In vivo studies using brine shrimp larvae manifested the reduction in adherence and virulence, which prompts further investigation about the potential of PA for the treatment of vibriosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app