JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Non-covalent formulation of active principles with dendrimers: Current state-of-the-art and prospects for further development.

During the last three decades, dendrimers, nano-sized highly-branched fractal-like symmetrical macromolecules, have been intensively studied as promising candidates for application as drug-delivery carriers. Among other important characteristics arising from their unique and highly-controlled architecture, size and surface properties, the possibility of hosting guest molecules in internal voids represents a key advantage underlying the potential of dendrimers as non-covalent drug-encapsulating agents. The impressive amount of accumulating experimental results to date allows researchers to identify the most important and promising theoretical and practical aspects of the use of dendrimers for this purpose. This review covers the main factors, phenomena, and mechanisms involved in this drug-vectorization approach, including mechanisms of non-covalent dendrimer-drug association, dendrimer-dendrimer interactions, as well as biological properties relevant to the host dendrimers. A discussion is then provided to illustrate some successful existing formulation strategies as well as to propose some new possible ones to optimize further development of the field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app