Add like
Add dislike
Add to saved papers

The degradation processes of refractory substances in nanofiltration concentrated leachate using micro-ozonation.

Waste Management 2017 November
Concentrated leachate (CL) is the byproduct of leachate treated by the membrane separation unit after bio-treatment processes, and contains many humic-like substances. Ozonation processes were applied and optimized for the further removal of those refractory matters in this work. Micro-bubble ozonation (MB-O3) possessed the best performance, and 76.0% and 69.9% of COD and TOC were found to be removed under the optimum conditions with ozone dosage of 2.4g/L, initial pH of 9 and reaction time of 120min. The reaction rate k in MB-O3 was 0.0104min(-1), three times higher than that in normal O3. The percentages of humic acid and fulvic acid in CL decreased from 24.1% to 14.3% and 49.6% to 25.0%, while that of HyI substances increased from 26.3% to 60.7%, which was also found in the fraction of <2000Da, with the occupied percentage increased from 0 to 63.0%. The humic acid-like substances might be transformed to matters with carbonyl and carboxyl group, since a continuous blue-shift was observed from Em/Ex 475/390 to 410/325nm. MB-O3 could be a promising method for the advanced treatment of CL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app