Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Viscous effects in pelvic floor muscles during childbirth: A numerical study.

During vaginal delivery, women sustain stretching of their pelvic floor, risking tissue injury and adverse outcomes. Realistic numerical simulations of childbirth can help in the understanding of the pelvic floor mechanics and on the prevention of related disorders. In previous studies, biomechanical finite element simulations of a vaginal delivery have been performed disregarding the viscous effects present on all biological soft tissues. The inclusion of the viscoelastic behaviour is fundamental, since it allows to investigate rate-dependent responses. The present work uses a viscohyperelastic constitutive model to evaluate how the childbirth duration affects the efforts sustained by the pelvic floor during delivery. It was concluded that viscoelasticity adds a stiffness component that leads to higher forces comparing with the elastic response. Viscous solutions are rate dependent, and precipitous labours could be associated to higher efforts, while lower reaction forces were denoted for normal and prolonged labours, respectively. The existence of resting stages during labour demonstrated the capability of the tissue to relax and recover some of the initial properties, which helped to lower the forces and stresses involved. The present work represents a step further in achieving a robust non-invasive procedure, allowing to estimate how obstetrical factors influence labour and its outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app