COMPARATIVE STUDY
JOURNAL ARTICLE
MULTICENTER STUDY
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Total Airway Count on Computed Tomography and the Risk of Chronic Obstructive Pulmonary Disease Progression. Findings from a Population-based Study.

RATIONALE: Studies of excised lungs show that significant airway attrition in the "quiet" zone occurs early in chronic obstructive pulmonary disease (COPD).

OBJECTIVES: To determine if the total number of airways quantified in vivo using computed tomography (CT) reflects early airway-related disease changes and is associated with lung function decline independent of emphysema in COPD.

METHODS: Participants in the multicenter, population-based, longitudinal CanCOLD (Canadian Chronic Obstructive Lung Disease) study underwent inspiratory/expiratory CT at visit 1; spirometry was performed at four visits over 6 years. Emphysema was quantified as the CT inspiratory low-attenuation areas below -950 Hounsfield units. CT total airway count (TAC) was measured as well as airway inner diameter and wall area using anatomically equivalent airways.

MEASUREMENTS AND MAIN RESULTS: Participants included never-smokers (n = 286), smokers with normal spirometry at risk for COPD (n = 298), Global Initiative for Chronic Obstructive Lung Disease (GOLD) I COPD (n = 361), and GOLD II COPD (n = 239). TAC was significantly reduced by 19% in both GOLD I and GOLD II compared with never-smokers (P < 0.0001) and by 17% in both GOLD I and GOLD II compared with at-risk participants (P < 0.0001) after adjusting for low-attenuation areas below -950 Hounsfield units. Further analysis revealed parent airways with missing daughter branches had reduced inner diameters (P < 0.0001) and thinner walls (P < 0.0001) compared with those without missing daughter branches. Among all CT measures, TAC had the greatest influence on FEV1 (P < 0.0001), FEV1 /FVC (P < 0.0001), and bronchodilator responsiveness (P < 0.0001). TAC was independently associated with lung function decline (FEV1 , P = 0.02; FEV1 /FVC, P = 0.01).

CONCLUSIONS: TAC may reflect the airway-related disease changes that accumulate in the "quiet" zone in early/mild COPD, indicating that TAC acquired with commercially available software across various CT platforms may be a biomarker to predict accelerated COPD progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app