COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Theoretical and experimental comparison of lag-based and time-based exponential moving average models of QT hysteresis.

Physiological Measurement 2017 September 27
OBJECTIVE: In the electrocardiogram, adaptation of the QT interval to variations in heart rate is not instantaneous. Quantification of this hysteresis phenomenon relies on mathematical models describing the relation between the RR and QT time series. These models reproduce hysteresis through an effective RR interval computed as a linear combination of the history of past RR intervals. This filter depends on a time constant parameter that may be used as a biomarker.

APPROACH: The most common hysteresis model is based on an autoregressive filter with an impulse response that decreases exponentially with the beat number (lag-based model). Recognizing that the QT time series is unevenly spaced, we propose two exponential moving average filters (time-based models) to define the effective RR interval: one with an impulse response that decreases exponentially with time in seconds, and one with a step response that relaxes exponentially with time in seconds. These two filters are neither linear nor time-invariant. Recurrence formulas are derived to enable efficient implementation.

MAIN RESULTS: Application to clinical signals recorded during tilt table test, exercise and 24 h Holter demonstrates that the three models perform similarly in terms of goodness-of-fit. When comparing the hysteresis time constant in two conditions with different heart rates, however, the time-based models are shown to reduce the bias on the hysteresis time constant caused by heart rate acceleration and deceleration.

SIGNIFICANCE: Time-based models should be considered when intergroup differences in both heart rate and QT hysteresis are expected.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app