Add like
Add dislike
Add to saved papers

Membrane-Active Amphipathic Peptide WRL3 with in Vitro Antibiofilm Capability and in Vivo Efficacy in Treating Methicillin-Resistant Staphylococcus aureus Burn Wound Infections.

ACS Infectious Diseases 2017 November 11
Methicillin-resistant Staphylococcus aureus (MRSA) has become increasingly prevalent in hospitals, clinics, and the community. MRSA can cause significant and even lethal infections, especially in skin burn wounds. The currently available topical agents have largely failed to eliminate MRSA infections due to resistance. Therefore, there is an urgent need for new and effective approaches for treating MRSA. Here, we show that a novel engineered amphipathic peptide, WRL3 (WLRAFRRLVRRLARGLRR-NH2), exhibits potent antimicrobial activity against MRSA, even in the presence of various salts or serum. The cell selectivity of WRL3 was demonstrated by its ability to specifically eliminate MRSA cells over host cells in a coculture model. Additionally, WRL3 showed a synergistic effect against MRSA when combined with ceftriaxone and effectively inhibited sessile biofilm bacteria growth leading to a reduction in biomass. Fluorescent measurements and microscopic observations of live bacterial cells and artificial membranes revealed that WRL3 exerted its bactericidal activity possibly by destroying the bacterial membrane. In vivo studies indicate that WRL3 is able to control proliferation of MRSA in wound tissue and reduce bioburden and provides a more favorable environment for wound healing. Collectively, our data suggest that WRL3 has enormous potential as a novel antimicrobial agent for the treatment of clinical MRSA infections of skin burn wounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app