Add like
Add dislike
Add to saved papers

Double acid etching treatment of dental implants for enhanced biological properties.

BACKGROUND: The topographical features on the surface of dental implants have been considered as a critical parameter for enhancing the osseointegration of implants. In this work, we proposed a surface obtained by a combination of shot blasting and double acid etching. The double acid etching was hypothesized to increase the submicron topography and hence further stimulate the biological properties of the titanium implant.

METHODS: The topographical features (surface roughness and real surface area), wettability and surface chemical composition were analyzed.

RESULTS: The results showed that the proposed method produced a dual roughness, mainly composed of randomly distributed peaks and valleys with a superimposed nanoroughness, and hence with an increased specific surface area. Despite the fact that the proposed method does not introduce significant chemical changes, this treatment combination slightly increased the amount of titanium available on the surface, reducing potential surface contaminants. Furthermore, the surface showed increased contact angle values demonstrating an enhanced hydrophobicity on the surface. The biological behavior of the implants was then assessed by culturing osteoblast-like cells on the surface, showing enhanced osteoblast adhesion, proliferation and differentiation on the novel surface.

CONCLUSIONS: Based on these results, the described surface with dual roughness obtained by double acid etching may be a novel route to obtain key features on the surface to enhance the osseointegration of the implant. Our approach is a simple method to obtain a dual roughness that mimics the bone structure modified by osteoclasts and increases surface area, which enhances osseointegration of dental implants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app