Add like
Add dislike
Add to saved papers

Luminance information decoding on the basis of local field potential signals of pigeon optic tectum neurons.

Neuroreport 2017 November 9
Important aspects of brain information processing can be understood by examining decoding of visual stimuli from neuronal response signals. In this research, the luminance information is decoded from the local field potential signal in the optic tectum region of the pigeon. We designed a luminance visual stimulus model with transient flicker characteristics, recorded multichannel local field potential (LFP) signals using a microelectrode array, extracted LFP Fourier transform energy and phase features, constructed a multivariate linear inverse filter luminance information decoding algorithm, and evaluated decoding effects using a cross-correlation method. We found that LFP signal phase decoding of luminance information yielded better effects than amplitude decoding of luminance information. In the case of optimal frequency band, channels, delay time, and other parameters, the results of phase and amplitude codecoding could reach 0.94±0.02. Comparing the differences between neuronal spike decoding and LFP decoding, we found that LFP signal phase and amplitude codecoding resulted in luminance closer to that of the actual stimulus and required fewer decoding electrode channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app