Add like
Add dislike
Add to saved papers

Effect of Storage on Lactase-Treated β-Casein and β-Lactoglobulin with Respect to Bitter Peptide Formation and Subsequent in Vitro Digestibility.

Using active lactose to hydrolyze lactose during storage is a common process to produce lactose-hydrolyzed (LH) milk. Proteolysis induced by residual proteases in commercial lactase was studied in a system using purified β-casein or β-lactoglobulin during a 60-day storage period at 22 or 38 °C. The proteolysis of β-casein by residual proteases occurred more extensively than that of β-lactoglobulin. Peptidomic analysis by LC-ESI-MS/MS revealed that Ile, Leu, Tyr, and Phe residues near the C-terminus of β-casein were the main sites of cleavage by the residual proteases, generating assumed bitter peptides. In the subsequent in vitro digestion study, proteolysis during storage was shown to greatly affect the subsequent digestibility of β-casein, leading to an elevated degree of hydrolysis and the formation of new digested peptides. This study highlights the potential influence of residual proteases in commercial lactase on the storage quality and digestibility of LH milk containing active lactase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app