Add like
Add dislike
Add to saved papers

Study of ChiR function in Serratia marcescens and its application for improving 2,3-butanediol from crystal chitin.

Microbial utilization of chitin, a potential renewable biomass feedstock, is being pursued as a means of developing novel consolidated bioprocessing for the production of chemicals. Serratia marcescens is a gram-negative bacterium that is known for its chitinolytic capability and as a native 2,3-butanediol producer. In S. marcescens, ChiR has been suggested to be a positive regulator of chitinase production. In this study, we aim to understand the effect of ChiR in regulating nine chitinase-related genes in S. marcescens Db11 and demonstrate manipulation of chiR as a useful and efficient genetic target to enhance chitin utilization. First, a chiR overexpression (chiROE) strain and a chiR deletion (ΔchiR) strain were generated and characterized in terms of cellular growth, chitinase activity, and total secreted protein. Compared to the wild-type Db11 strain, the S. marcescens chiROE strain showed an increase in chitinase activity (2.14- to 6.31-fold increase). Increased transcriptional expression of chitinase-related genes was measured using real-time PCR, showing 2.12- to 10.93-fold increases. The S. marcescens ΔchiR strain showed decreases in chitinase activity (4.5- to 25-fold decrease), confirming ChiR's role as a positive regulator of chitinase expression. Finally, chiR overexpression was investigated as a means of increasing biochemical production (2,3-butanediol) from crystal chitin. The chiROE strain produced 1.13 ± 0.08 g/L 2,3-butanediol from 2% crystal chitin, a 2.83-fold improvement from the wild-type strain, indicating ChiR is an important and useful genetic engineering target for enhancing chitin utilization in S. marcescens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app