Add like
Add dislike
Add to saved papers

Improving extracellular production of Serratia marcescens lytic polysaccharide monooxygenase CBP21 and Aeromonas veronii B565 chitinase Chi92 in Escherichia coli and their synergism.

AMB Express 2017 September 8
Lytic polysaccharide monooxygenases (LPMOs) can oxidize recalcitrant polysaccharides and boost the conversion of the second most abundant polysaccharide chitin by chitinase. In this study, we aimed to achieve the efficient extracellular production of Serratia marcescens LPMO CBP21 and Aeromonas veronii B565 chitinase Chi92 by Escherichia coli. Twelve signal peptides reported with high secretion efficiency were screened to assess the extracellular production efficiency of CBP21 and Chi92, with glycine used as a medium supplement. The results showed that PelB was the most productive signal peptide for the extracellular production of CBP21 and Chi92 in E. coli. Furthermore, CBP21 facilitated the degradation of the three chitin substrates (colloidal chitin, β-chitin, and α-chitin) by Chi92. This study will be valuable for the industrial production and application of the two enzymes for chitin degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app