Add like
Add dislike
Add to saved papers

Effects of low-intensity pulsed electromagnetic fields on bone microarchitecture, mechanical strength and bone turnover in type 2 diabetic db/db mice.

Scientific Reports 2017 September 8
Type 2 diabetic patients have impaired bone quality, leading to increased fracture risk. Substantial evidence demonstrates that pulsed electromagnetic fields (PEMF) could resist osteopenia/osteoporosis induced by estrogen deficiency and disuse. However, the effects of PEMF on osteopenia/osteoporosis associated with diabetes, especially for more prevalent type 2 diabetes, remain poorly understood. We herein investigated the skeletal effects and mechanisms of PEMF (15 Hz, 20 Gs) on leptin receptor-deficient db/db mice with typical type 2 diabetic symptoms. Our µCT results showed that 12-week PEMF exposure significantly improved both cancellous and cortical bone microarchitecture in db/db mice. Three-point bending and biomechanical indentation testing demonstrated that PEMF improved whole-bone structural properties and tissue-level material properties in db/db mice. PEMF significantly promoted bone formation in db/db mice evidenced by increased serum osteocalcin and bone mineral apposition rate, whereas PEMF exerted no observable alteration in bone resorption. Real-time PCR showed that PEMF upregulated tibial gene expression of osteoblastogenesis-related of canonical Wnt/β-catenin signaling but not osteoclastogenesis-related RANKL-RANK signaling in db/db mice. Our findings demonstrate that PEMF improved bone quantity and quality with obvious anabolic activities in db/db mice, and imply that PEMF might become a clinically applicable treatment modality for improving bone quality in type 2 diabetic patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app