Add like
Add dislike
Add to saved papers

Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.

Scientific Reports 2017 September 8
The origin of ultra-low friction exhibited by heterogeneous junctions of graphene and hexagonal boron nitride (h-BN) is revealed. For aligned interfaces, we identify a characteristic contact size, below which the junction behaves like its homogeneous counterparts with friction forces that grow linearly with the contact area. Superlubricity sets in due to the progressive appearance of Moiré patterns resulting in a collective stick-slip motion of the elevated super-structure ridges that turns into smooth soliton-like gliding with increasing contact size. Incommensurability effects are enhanced in misaligned contacts, where the friction coefficients further drop by orders of magnitude. Our fully atomistic simulations show that the superlubric regime in graphene/h-BN heterostructures persists up to significantly higher loads compared to the well-studied twisted homogeneous graphene interface. This indicates the potential of achieving robust superlubricity in practical applications using two-dimensional layered materials heterojunctions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app