Add like
Add dislike
Add to saved papers

Pharmacokinetics of Morphine in Rats with Adjuvant-induced Arthritis.

In Vivo 2017 September
We investigated the in vivo dynamics and analgesic effect of morphine using an adjuvant-induced arthritis (AA) rat as a model of chronic inflammation. Morphine generally binds to μ-opioid receptors in the brain to exert its effects. After several minutes, it is metabolized by glucuronidation via a UDP-glucuronosyltransferase (UGT). Here, we showed that in AA rats, UGT activity in liver microsomes was reduced. Morphine-free serum fractions in AA rats were also decreased (control, 84.9%; AA, 63.9%) and the expression of ATP-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1), which plays a crucial role in morphine bile excretion, decreased to 23.0% that of the control group. However, we observed no significant difference between the AA and control groups regarding blood concentrations of morphine and morphine-3-glucuronide. In contrast, the analgesic effect of morphine increased 4-fold in AA rats. Our results showed that the pharmacokinetics of morphine is not changed, but the pharmacodynamics of morphine is enhanced in chronic inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app