Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Molecular dynamics simulations of ether- and ester-linked phospholipids.

Dissimilarities in the bulk structure of bilayers composed of ether- vs ester-linked lipids are well-established; however, the atomistic interactions responsible for these differences are not well known. These differences are important in understanding of why archaea have a different bilayer composition than the other domains of life and why humans have larger concentrations of plasmalogens in specialized membranes? In this paper, we simulate two lipid bilayers, the ester linked dipalmitoylphosphatidylcholine (DPPC) and the ether lined dihexadecylphosphatidylcholine (DHPC), to study these variations. The structural analysis of the bilayers reveals that DPPC is more compressible than DHPC. A closer examination of dipole potential shows DHPC, despite having a smaller dipole potential of the bilayer, has a higher potential barrier than DPPC at the surface. Analysis of water order and dynamics suggests DHPC has a more ordered, less mobile layer of water in the headgroup. These results seem to resolve the issue as to whether the decrease in permeability of DHPC is due to of differences in minimum area per lipid (A0 ) or diffusion coefficient of water in the headgroup region (Dhead ) (Guler et al., 2009) since we have shown significant changes in the order and mobility of water in that region.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app