Add like
Add dislike
Add to saved papers

Modeling drug release through stimuli responsive polymer hydrogels.

There is a rising interest in stimuli-responsive hydrogels to achieve controlled and self-regulated drug delivery. Stimuli responsive polymer hydrogels with their ability to swell/de-swell under varying pH conditions present themselves as a potential candidate for controlled drug delivery. It is important to develop a mechanistic understanding of the underlying phenomena that will help suggest ways to control the drug release from a polymer hydrogel. We present a mathematical model that couples Nernst-Planck, Poisson and force balance equations to incorporate diffusion of ionic species and drug along with deformation of hydrogel under osmotic pressure. The model can be used to simulate swelling behaviour of the hydrogel along with the kinetics of drug release. It has been validated with published experimental data for swelling of polyhydroxyl methacrylate-co-methacrylic acid (pHEMA-co-MA) gels and release kinetics of Phenylpropanolamine from these gels. Effect of formulation parameters such as polymer concentration and cross-linker concentration has also been evaluated. The model can be used to reduce the number of exploratory experiments required during design of a drug delivery system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app