Add like
Add dislike
Add to saved papers

Studying tau protein propagation and pathology in the mouse brain using adeno-associated viruses.

The progressive spread of pathological brain lesions containing aggregated tau protein is a hallmark of Alzheimer's disease and other neurodegenerative diseases. In AD, this process follows a distinct pattern along neuronal connections from the entorhinal cortex to hippocampal areas and further on through the limbic system. In other tauopathies, the spread of tau appears less hierarchical throughout the brain, and also nonpathological tau is reported to cross-synaptic connections in the brain. To be able to study the process of cell-to-cell transport of tau and the associated neurotoxicity in the brain in vivo, adeno-associated virus-mediated expression of tau can be used to express different forms of tau in distinct brain areas in rodent models. As an example, we describe how the expression of FTD-mutant human tauP301L in the entorhinal cortex of wild-type mice can be used to study the propagation of tau to connected neurons and to determine pathological consequences such as tau hyperphosphorylation, misfolding, and gliosis. The approach described can easily be translated to study other aggregating and/or propagating proteins in the brain such as synuclein, Abeta, or SOD1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app