Journal Article
Review
Add like
Add dislike
Add to saved papers

Diet Composition and Trophic Ecology of Northeast Pacific Ocean Sharks.

Although there is a general perception of sharks as large pelagic, apex predators, most sharks are smaller, meso- and upper-trophic level predators that are associated with the seafloor. Among 73 shark species documented in the eastern North Pacific (ENP), less than half reach maximum lengths >200cm, and 78% occur in demersal or benthic regions of the continental shelf or slope. Most small (≤200cm) species (e.g., houndsharks) and demersal, nearshore juveniles of larger species (e.g., requiem sharks) consume small teleosts and decapod crustaceans, whereas large species in pelagic coastal and oceanic environments feed on large teleosts and squids. Several large, pelagic apex predator species occur in the ENP, but the largest species (i.e., Basking Shark, Whale Shark) consume zooplankton or small nekton. Size-based dietary variability is substantial for many species, and segregation of juvenile and adult foraging habitats also is common (e.g., Horn Shark, Shortfin Mako). Temporal dietary differences are most pronounced for temperate, nearshore species with wide size ranges, and least pronounced for smaller species in extreme latitudes and deep-water regions. Sympatric sharks often occupy various trophic positions, with resource overlap differing by space and time and some sharks serving as prey to other species. Most coastal species remain in the same general region over time and feed opportunistically on variable prey inputs (e.g., season migrations, spawning, or recruitment events), whereas pelagic, oceanic species actively seek hot spots of prey abundance that are spatiotemporally variable. The influence of sharks on ecosystem structure and regulation has been downplayed compared to that of large teleosts species with higher per capita consumption rates (e.g., tunas, billfishes). However, sharks also exert indirect influences on prey populations by causing behavioural changes that may result in restricted ranges and reduced fitness. Except for food web modelling efforts in Alaskan waters, the trophic impacts of sharks are poorly incorporated into current ecosystem approaches to fisheries management in the NEP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app