Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Disrupting IGF Signaling in Adult Mice Conditions Leanness, Resilient Energy Metabolism, and High Growth Hormone Pulses.

Endocrinology 2017 July 2
Growth hormone (GH) and insulinlike growth factor (IGF) promote aging and age-related pathologies. Inhibiting this pathway by targeting IGF receptor (IGF-1R) is a promising strategy to extend life span, alleviate age-related diseases, and reduce tumor growth. Although anti-IGF-1R agents are being developed, long-term effects of IGF-1R blockade remain unknown. In this study, we used ubiquitous inducible IGF-1R knockout (UBIKOR) to suppress signaling in all adult tissues and screened health extensively. Surprisingly, UBIKOR mice showed no overt defects and presented with rather inconspicuous health, including normal cognition. Endocrine GH and IGF-1 were strongly upregulated without causing acromegaly. UBIKOR mice were strikingly lean with coordinate changes in body composition and organ size. They were insulin resistant but preserved physiological energy expenditure and displayed enhanced fasting metabolic flexibility. Thus, long-term IGF-1R blockade generated beneficial effects on aging-relevant metabolism, but exposed to high GH. This needs to be considered when targeting IGF-1R to protect from neurodegeneration, retard aging, or fight cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app