Add like
Add dislike
Add to saved papers

Modeling African American prostate adenocarcinoma by inducing defined genetic alterations in organoids.

Oncotarget 2017 August 2
Genomic studies are rapidly identifying genetic alterations in human cancer, but functional validation of such alterations has been slow. Here, using human prostate cancer as a model, we have assessed the feasibility of engineering defined genetic alterations in well-known cancer driver genes to transform benign prostate epithelial organoids derived from African American men. Benign human prostate organoids were transduced with lentiviruses expressing MYC, shPTEN, shTP53 and AR, alone and in various combinations, to recapitulate prostate cancer development. Organoids expressing MYC, shPTEN, shTP53 and AR (denoted MPPA); MYC, shPTEN and shTP53 (MPP); or MYC (M) were significantly larger, had higher proliferation rates and demonstrated pathologically transformed morphology compared to organoids transduced with control lentivirus. Alterations in MYC, PTEN and TP53 also affected the rate of organoid basal-to-luminal differentiation in vitro . MPPA and MPP organoids expressed the clinical prostate cancer marker AMACR and developed prostate adenocarcinoma when grafted under the renal capsule in mice. These data indicate that genetic alterations commonly observed in human prostate cancer can be rapidly modeled in human organoid culture. Prostate cancer organoids provide a useful pre-clinical model for the evaluation of new candidate cancer genes, cancer disparities, and potentially for testing of novel therapeutic agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app