Add like
Add dislike
Add to saved papers

Selective compounds enhance osteoblastic activity by targeting HECT domain of ubiquitin ligase Smurf1.

Oncotarget 2017 August 2
The HECT-type ubiquitin ligase Smurf1 (Smad ubiquitination regulatory factor-1) plays the prominent role in regulation of bone formation, embryonic development, and tumorigenesis by directing the ubiquitin-proteasomal degradation of specific targets. In contrast with RING-type E3s, the catalytic HECT domain of Smurf1 firstly binds to and then transfers ubiquitin (Ub) molecules onto the substrates. The Smurf1-Ub interaction is required for Smurf1 catalytic ligase activity to promote substrate degradation. However, so far specific regulators or compounds controlling Smurf1-Ub interaction and the ligase activity have not been identified. Here we report two small molecule compounds targeting Ub binding region of HECT domain interrupt Smurf1-Ub contact, inhibit Smurf1 ligase activity and stabilize BMP signal components Smad1/5 protein level. Furthermore, these compounds increase BMP signal responsiveness and enhance osteoblastic activity in cultured cells. These findings provide a novel strategy through targeting Smurf1 ligase activity to potentially treat bone disorders such as osteoporosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app