Add like
Add dislike
Add to saved papers

Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate.

AIM: To evaluate the chemical and physical properties of a tricalcium silicate root canal sealer containing povidone and polycarboxylate (BioRoot RCS), a calcium silicate MTA-based sealer containing a salicylate resin (MTA Fillapex), a traditional eugenol-containing sealer (Pulp Canal Sealer) and an epoxy resin-based root canal sealer (AH Plus).

METHODOLOGY: Calcium release, pH, setting time, water sorption, volume of open pores, volume of impervious portion, apparent porosity and weight loss were measured. The ability to nucleate calcium phosphates (CaP) after ageing 28 days in a simulated body fluid was evaluated using ESEM-EDX and micro-Raman spectroscopy. Data were statistically analysed (P = 0.05) using one-way anova (setting time, radiopacity, solubility, water sorption, porosity) or two-way anova (ion release tests).

RESULTS: BioRoot RCS had a final setting time of 300 min and adequate radiopacity (5.2 mm Al). It demonstrated the highest (P < 0.05) and more prolonged ability to release calcium ions (721 ppm at 3 h) and to increase the pH (11-12) (P < 0.05); B-type carbonated apatite deposits were found on aged BioRoot RCS (biointeractivity-related CaP-forming ability). A final setting time of 270 min and good calcium release (17.4 ppm at 3 h) were measured for MTA Fillapex; apatite deposits were present on aged samples. No calcium release and no alkalizing activity were measured for Pulp Canal Sealer and AH Plus; no CaP nucleation was detected on aged Pulp Canal Sealer, and some apatite deposits were found on aged AH Plus (chemi/physisorption-related CaP-deposition). Higher and significantly different (P < 0.05) porosity, water sorption and solubility were measured for the two calcium silicate sealers, especially for BioRoot RCS.

CONCLUSIONS: BioRoot RCS had bioactivity with calcium release, strong alkalizing activity and apatite-forming ability, and adequate radiopacity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app