Add like
Add dislike
Add to saved papers

Densification of Type I Collagen Matrices as a Model for Cardiac Fibrosis.

Cardiac fibrosis is a disease state characterized by excessive collagenous matrix accumulation within the myocardium that can lead to ventricular dilation and systolic failure. Current treatment options are severely lacking due in part to the poor understanding of the complexity of molecular pathways involved in cardiac fibrosis. To close this gap, in vitro model systems that recapitulate the defining features of the fibrotic cellular environment are in need. Type I collagen, a major cardiac extracellular matrix protein and the defining component of fibrotic depositions, is an attractive choice for a fibrosis model, but demonstrates poor mechanical strength due to solubility limits. However, plastic compression of collagen matrices is shown to significantly increase its mechanical properties. Here, confined compression of oligomeric, type I collagen matrices is utilized to resemble defining hallmarks seen in fibrotic tissue such as increased collagen content, fibril thickness, and bulk compressive modulus. Cardiomyocytes seeded on compressed matrices show a strong beating abrogation as observed in cardiac fibrosis. Gene expression analysis of selected fibrosis markers indicates fibrotic activation and cardiomyocyte maturation with regard to the existing literature. With these results, a promising first step toward a facile heart-on-chip model is presented to study cardiac fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app