JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Quantification of AKBA in Boswellia sacra Using NIRS Coupled with PLSR as an Alternative Method and Cross-Validation by HPLC.

INTRODUCTION: 3-O-Acetyl-11-keto-β-boswellic acid (AKBA), one of the pentacyclic triterpenoids, is the main biologically active constituent in the resin of Boswellia sacra and has received significant pharmacological interest in recent years.

OBJECTIVE: It was aimed to develop a robust method to quantify the AKBA content in methanolic extracts of different parts of B. sacra plants and in various fractions of its resin exudates through near-infrared spectroscopy (NIRS) coupled with partial least squares regression (PLSR).

MATERIAL AND METHODS: The near-infrared (NIR) spectra were used to measure the AKBA standards and B. sacra samples at a wavelength range between 700 and 2500 nm in absorption mode. A PLSR model was built from the obtained spectral data using 70% of the AKBA working standard solutions (training set), ranging from 0.1 ppm to 100 ppm. The final PLSR showed a R2 value of 99% with a root mean square error of cross-validation (RMSECV) value of 0.39% and a R2 value of 99%.

RESULTS: The results showed that a 50% CHCl3 /n-hexane sub-fraction has the highest concentration of AKBA (14.8%), followed by 55% CHCl3 /n-hexane (13.6%), and 40% CHCl3 /n-hexane (6.1%).

CONCLUSION: As the results achieved with the proposed NIRS methodology are in close agreement to the results of AKBA analysis using HPLC, we suggest that our proposed NIRS method is a fast alternative and non-destructive method for the analysis of AKBA in different samples of B. sacra. Copyright © 2017 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app