Add like
Add dislike
Add to saved papers

The influence of thermal treatment on bioweathering and arsenic sorption capacity of a natural iron (oxyhydr)oxide-based adsorbent.

Chemosphere 2017 December
Adsorption plays a significant role in remediation of waters contaminated with arsenic, but the efficiency of the process varies depending on the sorbent properties. Bog iron ores (BIOs), characterized by high sorption capacity and widespread availability, seem to be an optimal sorbent of arsenic. However, the use of BIOs for arsenic removal from waters may be limited by the high amount of organic matter, which may stimulate microbial activity, and thus decomposition of the sorbent. The aim of this study was to determine the effect of organic matter removal by thermal transformation (roasting) on the bioavailability of BIOs and their arsenic sorption capacity. For this purpose, the influence of bacterial growth and activity on untreated and treated BIOs, unloaded and loaded with arsenic, was studied. Moreover, the chemical and physical properties (including FTIR and desorption of arsenic) of BIOs were investigated as well. The results show that the removal of organic matter increases the stability of BIOs, and thus reduces the bioavailability of the immobilized arsenic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app