Add like
Add dislike
Add to saved papers

Polyglycerolated nanocarriers with increased ligand multivalency for enhanced in vivo therapeutic efficacy of paclitaxel.

Biomaterials 2017 November
Despite the excellent biocompatibility and antifouling effect of poly(ethylene glycol) (PEG), the high steric hindrance, limited chemical functionality, and low ligand multivalency of PEGylated nanocarriers often lead to inefficient cell targeting and intracellular trafficking. Hence, a new structure of hydrophilic corona allowing a higher ligand density without loss of excellent biocompatibility is highly desirable. Here we introduce tumor-targeted polyglycerolated (PGylated) nanocarriers that dramatically enhance the in vivo therapeutic efficacy of incorporated paclitaxel simply by increasing the surface density of hydrophobic tumor-targeting ligands. Linear polyglycerol-poly (ε-caprolactone) block copolymer (PG-b-PCL) is used to prepare PGylated lipiodol nanoemulsions, where PG serves as a corona conjugated with a large number of folic acid (FA) for efficient tumor targeting. Unlike FA-PEGylated nanoemulsions, FA-PGylated nanoemulsions can display a larger number of FA without structural destabilization. This property enables excellent anti-cancer activities and effective tumor regression in a cervical cancer xenograft murine model at a cumulative drug dose of ∼5 mg kg-1 , which is about four fold smaller than that of commercial Taxol formulation. This study highlights the importance of surface chemistry of nanocarriers that enable multivalent ligand functionalization and high tolerance to the conjugation of hydrophobic ligands, which make PG as a very effective hydrophilic corona for in vivo drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app