Add like
Add dislike
Add to saved papers

Modeling σ-Bond Activations by Nickel(0) Beyond Common Approximations: How Accurately Can We Describe Closed-Shell Oxidative Addition Reactions Mediated by Low-Valent Late 3d Transition Metal?

Accurate modelings of reactions involving 3d transition metals (TMs) are very challenging to both ab initio and DFT approaches. To gain more knowledge in this field, we herein explored typical σ-bond activations of H-H, C-H, C-Cl, and C-C bonds promoted by nickel(0), a low-valent late 3d TM. For the key parameters of activation energy (ΔE‡ ) and reaction energy (ΔER ) for these reactions, various issues related to the computational accuracy were systematically investigated. From the scrutiny of convergence issue with one-electron basis set, augmented (A) basis functions are found to be important, and the CCSD(T)/CBS level with complete basis set (CBS) limit extrapolation based on augmented double-ζ and triple-ζ basis pair (ADZ and ATZ), which produces deviations below 1 kcal/mol from the reference, is recommended for larger systems. As an alternative, the explicitly correlated F12 method can accelerate the basis set convergence further, especially after its CBS extrapolations. Thus, the CCSD(T)-F12/CBS(ADZ-ATZ) level with computational cost comparable to the conventional CCSD(T)/CBS(ADZ-ATZ) level, is found to reach the accuracy of the conventional CCSD(T)/A5Z level, which produces deviations below 0.5 kcal/mol from the reference, and is also highly recommendable. Scalar relativistic effects and 3s3p core-valence correlation are non-negligible for achieving chemical accuracy of around 1 kcal/mol. From the scrutiny of convergence issue with the N-electron basis set, in comparison with the reference CCSDTQ result, CCSD(T) is found to be able to calculate ΔE‡ quite accurately, which is not true for the ΔER calculations. Using highest-level CCSD(T) results of ΔE‡ in this work as references, we tested 18 DFT methods and found that PBE0 and CAM-B3LYP are among the three best performing functionals, irrespective of DFT empirical dispersion correction. With empirical dispersion correction included, ωB97XD is also recommendable due to its improved performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app