Add like
Add dislike
Add to saved papers

In Situ Stringing of Metal Organic Frameworks by SiC Nanowires for High-Performance Electromagnetic Radiation Elimination.

The design of novel hybrid nanostructures has been seen as an effective route to tune the properties of materials. Herein, we provide an in situ growth strategy to efficiently construct kebab-like hybrids, which are composed of one-dimensional SiC nanowires stringing polyhedral metal organic frameworks (MOFs). Through a heat-treatment process regardless of under air or argon, these hybrids generate an excellent electromagnetic absorption (EMA) ability. We comprehensively explored the growth and calcination process of these hybrids as well as their EMA enhanced mechanism. The results indicate that the MOFs kept as shrunken polyhedrons under air but decomposed to small particles under argon, due to the different calcination mechanism. In addition, the enhanced EMA ability should be attributed to the combined influences of the reduced dielectric constant, enlarged aspect ratio, and enhanced interface polarization. This research opens up the rational designs and applications of novel materials by the hybridizing of nanomaterials in multidimensions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app