Add like
Add dislike
Add to saved papers

Heli(aza)cene: A Helical Molecular Tweezer with Tunable Intra- and Intermolecular Charge Transfer.

Non-planar fluorophores offer unique avenues of intra- and intermolecular energy transfer not available in their planar counterparts. We have rationally designed a molecular tweezer based on the pyridine-2,6-dicarboxamide framework having two structurally similar arms with extended π-surface. We termed this molecular tweezer as Heli(aza)cene (HAC) due to its spontaneous adoption of helical conformation stabilized by the amide and imine moieties present in it. In the helical conformation, the two arms of HAC are twisted unequally. This asymmetry confers dissimilar electronic character to the two arms and results in intramolecular charge transfer interactions in HAC. Homochiral stacking of the P- and the M- helices in crystal, and profound redshifting of the emission at higher concentrations of HAC was attributed to intermolecular charge-transfer interactions in aggregated/crystal state. Exposure of HAC, in solution as well as in the solid state, to Lewis/Brønsted acids results in rapid and vibrant color changes. This is the first example of a π-layered helical molecule exhibiting tunable intra-/intermolecular charge-transfer characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app