Add like
Add dislike
Add to saved papers

Two Analogous Polyhedron-Based MOFs with High Density of Lewis Basic Sites and Open Metal Sites: Significant CO 2 Capture and Gas Selectivity Performance.

By means of modulating the axial ligand and adopting supermolecular building blocks (SBBs) strategy, two polyhedron-based metal-organic frameworks (PMOFs) have been successfully synthesized [Cu6 (C17 O9 N2 H8 )3 (C6 H12 N2 )(H2 O)2 (DMF)2 ]·3DMF·8H2 O (JLU-Liu46) and [Cu6 (C17 O9 N2 H8 )3 (C4 H4 N2 )(H2 O)2 (DMF)2 ]·3DMF·8H2 O (JLU-Liu47), which possess a high density of Lewis basic sites (LBSs) and open metal sites (OMSs). Since the size of axial ligand in JLU-Liu47 is smaller than that in JLU-Liu46, JLU-Liu47 shows larger pore volume and higher BET surface area. Then, the adsorption ability of JLU-Liu47 for some small gases is better than JLU-Liu46. It is worthwhile to mention that both of the two compounds exhibit outstanding adsorption capability for CO2 ascribed to the introducing of urea groups. In addition, the theoretical ideal adsorbed solution theory (IAST) calculation and transient breakthrough simulation indicate that JLU-Liu46 and JLU-Liu47 should be potential materials for gas storage and separation, particularly for CO2 /N2 , CO2 /CH4 , and C3 H8 /CH4 separation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app